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The coupled Dirac-E&stein equations for a homogeneous isotropic space-time 
forbid a closed universe but lead to the standard cosmological model for a flat 
universe. Therefore only the open universe is left as a nontrivial situation. There 
some of the desired cosmological effects emerge in a natural way: inflation, 
creation ex nihilo, etc. 

1. I N T R O D U C T I O N  

The well-known shortcomings of the standard cosmological model are 
generally held to be successfully overcome by the phenomenon of inflation 
(Blau and Guth, 1987; Turner, 1986). For the working of that inflationary 
mechanism, there must exist a weakly coupled scalar field which is initially 
in the false vacuum and therefore drives the inflation until the right 
vacuum value is attained. Although this paradigm has recently evoked 
some controversy [see the discussion of S. W, Hawking in Lightman and 
Brawyer, 1990; Penrose, 1989], the very occurrence of inflation is 
nevertheless thought to yield a very satisfactory explanation of the 
universe's past history. Therefore the controversial viewpoints are not so 
much concerned with its existence,  but rather with a detailed founda t ion  of 
inflation, especially with the question of where the scalar field comes from 
and why it undergoes such a peculiar phase transition from the false into 
the right vacuum, as is suggested by the Higgs mechanism. 

In such an ambiguous situation, it may be favorable to reconsider 
alternative possibilities for the inflationary mechanism. These can roughly 
be subdivided into two categories: (i) modifying Einstein's gravitation 
theory or (ii) resorting to exotic equations of state for matter  (--, negative 
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pressure). An example of the first category (i) has recently been proposed 
(Mattes and Sorg, 1991) and in the present paper we consider an alter- 
native of the second kind (ii). Here, the matter content of the primeval 
universe is not constituted by some scalar field (of questionable origin), but 
by a Dirac spinor field, whose existence in nature is beyond any doubt. 

Our results are the following: The Dirac-Einstein equations admit as 
a nontrivial case only the open universe. Here, there exist two types of 
solutions. The first type yields a universe which starts with zero radius but 
is "nonsingular" at the time t = 0 of its creation, i.e., the matter density 
p(t = 0) is finite and consequently the total mass is zero. Shortly after the 
universe's creation, the Dirac pressure is negative and therefore drives 
inflation during a certain time period lasting until the extension of the 
universe roughly reaches the magnitude of the Compton wavelength of the 
Dirac particle. After this inflationary period, the cosmic evolution rapidly 
approaches the situation predicted by the standard model. The mass-energy 
content of a comoving 3-volume is essentially generated during the 
inflationary phase and becomes constant during the subsequent standard 
phase. This feature is shared also by the second type, the bounce solutions; 
however, the comoving mass can adopt here two different, asymptotically 
constant values before and after the bounce. 

2. DIRAC-EINSTEIN EQUATIONS 

The point of departure is the assumption that the matter content of 
the primordial universe has been dominantly constituted by a Dirac spinor 
field ~, whose energy-momentum content T[tp] enters the Einstein field 
equations in the usual way, 

R~ -- ~ RG~v = 8~ r~v (1) 

where Lp is the Planck length. Here we restrict ourselves to a homogeneous 
isotropic universe, the metric tensor G of which is conveniently split up 
into two projectors according to 

G~v = ~,v + b~b~ (2) 

The timelike part is formed by the unit vector b, 

b~b~ = 1 (3) 

while the spacelike part ~3 satisfies 

~)u~bV = 0 (4a) 

~ . ~  = ~.;, (4b) 
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For such a special universe, the Einstein tensor E on the left of 
equation (1) acquires the following shape (Sorg, 1992): 

1 
E.v =- R. . , -  -~ RG.v 

(7 0" 
(5) 

where ~r is the radius of the universe and a dot denotes the derivative with 
respect to cosmic time 0. Thus the Hubble rate H is given by 

H -  = -- (6) 

Moreover, the "foliation index" a in equation (5) specifies the topology of 
the time slices 0=cons t  in the usual way: a =  +1 stands for the open 
universe, and cr = 0 ( - 1 )  denotes the flat (closed) cases, respectively. 

An important consequence of the homogenity and isotropy assump- 
tion (5) is now that the Einstein equations (1) force the energy-momentum 
T [ ~ ]  of the Dirac spinor field ~ into a very special shape, namely 

(7) 

Here the energy density Jr and pressure ~ are constant over the time slices 
and depend therefore exclusively upon cosmic time 0. Such a configuration 
is not quite trivial for a spinor field, because its spin density normally 
breaks isotropy. Thus we have to look for a method for obtaining in 
curved space those solutions of the Dirac equation 

ih~'G 0 = Mc~, (8) 

which carry an energy-momentum content just of the special kind (7). 

3. RELATIVISTIC SCHRODINGER EQUATIONS 

Our method consists in rewriting the Dirac equation (8) in form of a 
"relativistic Schr6dinger equation" (Sorg, 1992) 

ihc( ~v ~ ) = oW. ~ (9) 

The gauge-covariant derivative ~ ,  is defined here as usual 

GO := a,,~, + d , .  ~, (lO) 
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and involves the connection ~r = d .  d x  ~ 

d~ = �89 ~/~ (11) 

as a ~ J ~ ( 1 ,  3)-valued 1-form with the corresponding generators 
being built up by the ordinary Dirac matrices f~ through 

1 s  = ~[r f~] (12) 

Moreover, the Hamiltonian ~ = ~ d x  ~' is a @l(4, C)-valued 1-form 
and transforms homogeneously with respect to a gauge transformation of 
the wave function (k 

i//' = ~ -1 .~J (13) 

i.e., 

5/g'. = 5 P-1 . 5 ~ . 5  e (14) 

It is required to satisfy the "Dirac condition" (Sorg, 1992) 

7 ~ "2/t~u = M c  2 .  1 (15) 

in order that any solution of the relativistic Schr6dinger equation (9) also 
obeys the Dirac equation (8). 

Thus, we can construct the solution ~(x) of the latter equation in the 
presence of an external field o~ (=  d d  + d / x  d )  by first looking for 
the Hamiltonian ~ and then integrating the corresponding Schr6dinger 
equation (9) for ~. The dynamical equations for the Hamiltonian 5r 
(:= hcoVf~) are easily deduced as (Sorg, 1992) 

@ ~ ,  - ~ v j f .  + i [~,Vf~, ~ ]  = io~.v (16a)  

.1 = -iy ,v. v (16b) 

Such a Hamiltonian dynamics immediately guarantees conservation laws 
of the kind 

V . j , , = 0  (17) 

and 
V~T~V=0 (18) 

where the densities j and T are bilinear constructions of the wave function 
and the corresponding operators, i.e., 

j~ = q}. v~. ~ (19) 
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and 

T "~ = ~ .  J - '~ .  ~b (20) 

For instance, for the Dirac field the "velocity operator" v just coincides 
with the Dirac matrices in curved space (v ~ =s 7"), and the energy-momen- 
tum operator J -  is found as 

o@ : = ~ 0 . ~ +  .~o 
(21) 

The advantage of the relativistic Schr6dinger approach is now that for 
solving the Einstein equations (1) one is not forced to actually compute the 
Dirac wave function ~b! Rather, it is sufficient to consider merely those 
densities which enter equation (1); their dynamical equations are also 
governed by the Hamiltonian Jg. Therefore we can restrict ourselves to the 
determination of ~f~, in place of ~b. 

4. EQUATION OF STATE 

To give an example, we return to the homogeneous, isotropic space- 
time as specified by equations (5) and (7). For such a highly symmetric 
situation, the Hamiltonian ~ may be combined from the generators of 
~l(4, C) in a very simple way. This Lie algebra is isomorphic to the 
Clifford algebra ~g(1, 3) and therefore is spanned up by the scalar density 
operator 1, by its pseudocounterpart ~ (:= (1/4!)~v~?'TvT~7~), further by 
the velocity operator ?~ and its axial counterpart ~ ' =  ~-~', and finally by 
the J ~ J ~ / ~ ( 1 ,  3) generators Z "v. Therefore our Hamiltonian ansatz is 
constructed by these elements in the following manner: 

= -~- 7~ + i ~ sin Z - H b~- 1 - baZex 

+ cos X + (4b~b~ - G~a)7 ~" (22) 

Observe here that, besides the radius ~ and Hubble expansion rate H, 
there emerges only a single additional dynamical variable, namely the angle 
Z, which is to be considered as a function of cosmic time 0. Moreover, for 
a free particle in flat space-time ( H =  a = 0) the Hamiltonian (w)jf of (22) 
is simplified into 

(w)~  ~ (o)jf~ = _ ~  b,,(b~y~) (23) 
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and implies the well-known plane wave solutions 

0(x) ~ (~ =/]/in exp[ ~ ik~x ~' ] (24) 

of the Dirac equation (8), resp. Schr6dinger equation (9), provided the 
initial value 0in is an eigenspinor of the Hamiltonian (o)~: 

<o)~q,, = +k~0in (25) 

[The eigenspinors 0in can easily be determined (Sorg, 1992).] The interest- 
ing point with those flat solutions is here that, despite their nonvanishing 
spin density, their energy-momentum density T [-equations (20), (21)] 
obeys the homogenity and isotropy requirement (7), i.e., 

L ,  ~ (~ = Mc'2Qb~,b, ' (26) 

because the scalar density 0 (: = ~ "~) is a constant throughout space-time. 
The energy-momentum density (~ of (26) suggests that we interpret 

--albeit somewhat naively--the scalar ,o as the particle density, i.e., number 
of particles per unit 3-volume, with antiparticles counted negative (Misner 
et al., 1973). Thus the invariant energy density (26) can be thought of as 
the product of the mass-energy of a single particle (Mc 2) times the particle 
density Q. Unfortunately, this interpretation evokes a well-known difficulty 
with the "classical" Dirac field ~, namely its attribution of a negative mass- 
energy to the antiparticles (the density ~ is of indefinite sign!). Although 
this shortcoming of the unquantized Dirac theory may be overcome during 
the process of second quantization by resorting to the well-known anticom- 
mutation relations for the field operators, we can retain here our naive pic- 
ture for the energy density, because the number (#) of particles in any com- 
oving 3-volume never changes sign [see equation (40) below]. 

Fortunately, the pleasant result for that space-time is immediately 
generalizable to curved space (He0) ,  where one finds by combining 
equations (20)-(22) 

( a Mc) (hc)-~<W)r~=3~ ~-~cosz+-  ~ -  b ~ b ~ - Q ~ - ~ c o s z ~  (27) 

Thus, the equation of state for the Dirac field is deduced from (7) as 

~a =/3J/r (28) 

with the thermodynamic coefficient/~ being given by 

cos Z /3=a 
3 cos g + 2m~ (29) 

Mc 
m := ~ - ,  inverse Compton length 
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This is a very plausible result because it says that the open (a = 1) 
universe may appear radiation-dominated (fl = 1/3) provided its radius 
is much smaller than the Compton length (rn~ ~ 1), but it always appears 
matter-dominated (/? = 0) for raN' ~> 1. In contrast to this, the flat universe 
(a = 0) is always matter-dominated [cf. (26)]. Observe also that the 
above-mentioned interpretation of the energy density would imply the 
introduction of an effective particle mass Men for the nonflat universes 
( o r  

3 cos Z) 
Me~=M 1 + ~  ~ r - ~ ]  (30) 

Again this result has a certain plausibility, because one will expect that the 
proper mass M of a particle is not fully established until the radius of the 
universe is appreciably greater than its Compton wavelength. 

5. EXPANSION DYNAMICS 

After the energy-momentum content T of the Dirac wave field is 
known, it can be used in order to deduce the equation of motion for the 
radius ~ from the Einstein equations (1). Thus, combining both equations 
(5) and (27) in the required manner readily yields 

4rrA2 # ( c o s z )  
/ : = - ~ -  ~5 l + 3 a  r 

/~ := QR 3 
(31) 

Here, the radius ~ has been rescaled by the Compton length (r := m~),  
as well as cosmic time 0 (t := toO) and the Planck length Lp (A := mLp). 
Moreover, the density Q has been eliminated in favor of the total number 
/~ of particles in a comoving 3-cell. Besides the dynamical equation for the 
radius r, (31), the Einstein equations also yield the so-called initial-value 
equation 

=  cosx+ 5 (32) 

which is a kind of first integral of the expansion dynamics and may be used 
to correlate the initial values for its numerical integration. 

Obviously, the dynamical equation (31) is not closed and therefore 
must be complemented by the equations of motion for the angle ;( and 
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density 0 (resp., particle number #). The density equation reads quite 
generally by virtue of the Schr6dinger equation (9) 

~ = i~-(Y~ - Yg~)-qJ (33) 

which yields by use of the Hamiltonian (w)yr of (22) 

O" 
+ 3HQ = 3 ~ Q sin Z (34) 

or, with reference to the particle number #, 

O- 
ki = 3 - # sin g (35) 

F 

Finally, for obtaining the last equation of motion we have to specify the 
Hamiltonian dynamics (16a), (16b) for the ansatz (22), which yields for the 
angular variable Z 

~ = o - ( 2 +  3 c~ z )  (36a) 

a r - 1  (36b) 

The important finding is here that the closed universe ( a =  - 1 )  is 
forbidden. However, this negative result is a consequence of the special 
Hamiltonian ansatz (w)~f of (22), and it is not quite sure whether a more 
general solution of the Hamiltonian dynamics (16a), (16b) would allow 
also a closed universe. In any case, for the nonclosed topology (a = 0, 1) 
the complete dynamical system consists of the Einstein equation (31), the 
number dynamics (35), and the angular dynamics (36a). Though the flat 
case (a = 0) is somewhat trivial here, we nevertheless take a glimpse at it 
because it is a kind of limiting ease for the open universe when the radius 

tends to infinity (Y/-~ oe). 
For a flat foliation of space-time (a = 0), the constancy of particle 

number # (=~#,) follows immediately from equation (35) and therefore the 
density Q becomes 

~ (f)L) = #___.*__* 
~3 

(37) 
# ,  = const 

Similarly, one demands in agreement with equations (36a), (36b) for the 
angle Z 

)/:0 (f))/--- 0 (38) 
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and then one concludes from either of the equations (31) or (32) for the 
radius r 

r( t ) = ( 6~zA 2 # , ) l/3 t2/3 (39) 

which is a well-known result in standard cosmology [E ins t e in -deS i t t e r  
universe (Rindler, 1977)]. 

Obviously, these flat-space results are important also for the open 
universe (a = 1). The reason is that the foliation index ~r occurs in the 
dynamical system (31), (32), (35), and (36a) frequently in connection with 
the inverse radius r, so that the flatness assumption (a = 0) is equivalent to 
the large-size approximation r ~ oe. Thus, the law of constancy of mass 
# , ,  (37), in a flat universe is weakened into [cf. (35)] 

# = # , e x p  - 3  ~ d 0  (40) 

for the open case ((T = 1), yielding the constancy of particle number only in 
the limit 0 ~ oG where N -* oo. Similarly, in this limit the radius ~ is found 
from (31), (32) as ~ 0  in place of (39), whereas the angle )~ finally 
increases linearly with time: Z ~ 2t (=  2toO). Consequently, the long-time 
behavior of the particle number/~ in (40) will be characterized by fluctua- 
tions on the Compton length and time scale. 

Besides the comparison between the flat and open universes for the 
present model, it is also instructive to consider the open case of the 
standard matter-dominated model. Clearly, the conservation of particle 
number (37) is also valid in this latter case and the corresponding expan- 
sion obeys the following law (Rindler, 1977): 

t [- r ( r '~ 2-] i/2 

(8~/3)A2#. L(8~/3)-A2~. ~- \(8~r/3")A2~,) J - 
sinh i [(81r/3iA2#,] 1/2 

(41) 

Since the power law (39) holds also for the present situation (41) in the 
limit t---, 0, all the standard models yield a singular physics at the moment 
of creation (t = 0), which makes them highly unreliable. Against that, one 
is easily convinced that there exists a nonsingular solution for the present 
Dirac-Einstein model (3l), (32), (35), (36a) which for t--*0 looks as 
follows: 

r( t)  = t + (9(t 3) (42a) 

#(  t) = #,.t  3 + C( t 5) (42b) 

r~ 1 
Z(t)  = 5 + -2 t + (9(t 2) (42c) 

902/32/9-5 
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The remarkable property of this solution is that the particle density Q 
adopts some constant value Qc (: = #c m3) at the moment of creation (t--0),  
so that the particle number p vanishes in the first instant. Consequently, 
the ultimate number # ,  in (40) of particles must be generated during the 
subsequent evolution of the universe ( 4  creation ex nihilo). Observe also 
that the solution (42a)-(42c) fixes the initial mass Me, of (30) as a quarter 
of its ultimate value M. We will follow now the further course of events in 
such a peculiar universe. 

6. NONSINGULAR UNIVERSE 

Among the various problems inherent in the standard cosmological 
model, perhaps its most acute difficulty is the singularity problem. Indeed, 
it is hard to imagine how all the mass content  (Mc2#,) of the present-day 
universe could have been concentrated initially (t--, 0) in a mathematical 
point (~  ~ 0) so that the density Q of (37) became infinite. Moreover, it 
remains unclear why the universe has such a large extension as observed 
today, because if it came into being with an initial size of roughly the 
Planck length Lp (~in~,~Lp~ 10-33cm) and was filled with matter of 
roughly the Planck density ( M ~  10 94 g/cm3), then it would have recol- 
lapsed within a few Planck times ( ~  10 -44 sec) according to the Einstein 
equation of motion 

3 hc 
(43) 

Only if the primordial matter is in an exotic state where it develops 
negative pressure [e.g., / ~ = - 1 ;  cf. (28)] is it possible to blow up the 
universe rapidly enough (~  > 0) in order to generate the initial outward 
push for the subsequent standard phase. 

Now it is instructive to see in detail how both problems may be over- 
come by the Dirac-Einstein system (42a)-(42c). 

6.1. Inflation 

First observe that the initial expansion (r ~ t) according to (42a) is a 
consequence of the fact that the initial particle density # of (42b) vanishes 
for t --* 0 more rapidly than the radius r itself, so that the initial-value equa- 
tion (32) admits no other possibility than linear growth for an open 
universe (a = 1). Incidentally, this is the same law of expansion as for long 
time t ~ oe (Fig. 1). However, this linearity is rapidly abandoned in favor 
of an exponential growth, which follows from the fact that the coefficient 
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Fig. 1. Primeval inflation. The expansion starts with a nonsingular inflationary phase 
according to (46), but inflation (?> 0) is possible only as long as the extension of the universe 
does not exceed roughly the Compton length rn-I  of the particle. Beyond this length (r ~> 1), 
the expansion rapidly approaches that of the standard model (41) (dotted curve), which is 
singular for t ~ 0  ( r ~  t 2/3) and behaves as ~ 1 for t--, oe. For increasing particle mass 
m =-A/Lp the inflationary push becomes stronger; A = 0: lower curve (~,r-= t), A = 1: middle 
curve; A = 100: upper curve (#, = 1 for all cases). 

/3 in (29) approaches the exceptional value fl= -1  (Fig. 2) and thus the 
energy-momentum (W)T of (27) of the Dirac field acts like a cosmological 
term, 

1 2 ( 4 4 )  (W)T~ ~ aMc o~.G~ 

Consequently, the Einstein equation (43), resp. (31), states for this 
limiting situation 

1 
/ ~ = 7 5  t +  - . . 

(45) 
/2~ \ 1/2 

"c :=~-~ A2m-3~c) 

with the obvious solution 

r = t + ~  + . �9 (46) 

Thus, the expansion even becomes accelerated (/~>0) and consequently 
undergoes an inflationary phase, whose duration may be estimated through 
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Fig. 2. Equa t i on  of state for the Dirac  field. The  coefficient fl of (29) adop t s  its exotic value 
- 1 in the first ins tan t  (t = 0) and  thus  signals the inflat ionary bir th  of  the universe.  For  large 
t ime t, fl adopts  the ma t t e r -dominance  value fl = 0. Lower  curve: A = 0, upper  curve: A = 100 
(#c = 1 always).  

the following argument: Since the equations (31) and (32) do admit only 
a minimum (~ = 0, f > 0) but not a maximum (k = 0,/: < 0) of the function 
r(t), the radius r is monotonically increasing with cosmic time t for the 
solution (42). Therefore, the acceleration F surely remains negative as soon 
as the radius r exceeds the value 3 (-~,~ is greater than three times the 
Compton length). Beyond this critical size, the universe looks like the 
matter-dominated standard model (41), where the normal gravitational 
pull of the constant matter content breaks the cosmic expansion. As a 
result we see that inflation can act only as long as the universe is not 
appreciably greater than the corresponding Compton wavelength, which 
suggests that we consider inflation as a quantum effect (Fig. 1). 

6.2, Creation ex Nihilo 

According to the present picture, the particle number g of (42b) 
vanishes at the moment of creation and therefore also the mass-energy in 
a comoving 3-cell [cf. (44)]. Thus, the notorious singularity problem of the 
standard model is avoided and the question of the origin of the universe's 
mass-energy content is settled trivially: the work-energy theorem for the 
Dirac tensor ~W~T of (27), 

V. T~'v - 0 .*> d ( J / , ~  3 ) = --,.@ d ~  3 (47} 



simply says that the increase of mass-energy 

~ / { ~ 3  .= MeffC2fl (48) 

in a comoving  3-cell of size .~3 is nothing else than the work done by the 
negative (!) Dirac pressure ~ upon  this cell: 

(7 
= ~-~ ~o cos Z (49) 

i.e., for the primeval era (42), 

5.0 

4.5 

4.0 

3.5 

'3 .0 

E 2.5 

2.0 

o.. 1.5 

~ ~  -'aoc (50) 

[cf. (44)], Since the effective mass M~fr per particle is of  restricted 
variability, the main contr ibut ion to the increase in the cell energy (48) 
comes from the generation of  new particles, i.e., the rise of the particle 
number /~  (Fig. 3). 

In order to give a rough estimate of this effect, we look for the 
relationship between the ultimate particle number  # ,  of (40) and the 
primordial  " C o m p t o n  number"  Pc of (42b) (i.e., the number  of particles in 
a " C o m p t o n  volume" of size rn -3 for r - , 0 ) .  Here, it may  be sufficient for 
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0.5 

0.0 

Cosmic time t 
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Fig. 3. Generation of particles. The universe starts with zero particle number /~, which 
increases rapidly during the inflationary phase (t~< 3) and then is stabilized at a constant 
value ,u, corresponding to the standard model. The ultimate value /% of (40) is a rapidly 
decreasing function f(A), (57), of the particle mass m (=-A/Lp). Upper curve: A = 0; lower 
curve: A = 1 (p~ = 1 always). 
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our  qualitative arguments  to consider the special case A = 0 (for an electron 
one has A ~ 10-25; the general dependance of particle number  /~ on the 
parameter  A can be read off from Fig. 3). However,  for that  simple case 
A = 0  we conclude from the Einstein equat ion of mot ion  (31) and the 
initial-value equat ion (32) that the radius r is identical to cosmic time t and 
this simplifies the particle number  # of (40) into 

i~--i~,exp[-3f~sin/(t)dt] (51) 

Further,  in order to get an approximate  value for the integral involved, we 
use the following estimate for the angle ;((t): 

+ 2t (52) 

which includes its correct  initial value ; ( (0)=  ~/2 as well as its long-time 
behavior  2( t -~  ~ ) - - 2  (Fig. 4). Thus, for small t we arrive at 

sin ;( dt = (g - ln(2t) (202 ( 2 t ) 4 -  I, �9 �9 �9 (53) t 

where (g is the Euler number  ( = 0 . 5 7 7 2 . . . ) .  Consequently,  the primeval 
( t - ~ 0 )  particle number /~  of (51) is found as 

/~(t)l A =0 = 8e - 3 ~ # ,  t 3 + (9(t 5) (54) 
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,1, 

f f  -0.5 
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. /  

-5~ 28 "6 '-4 

i ...... 
"2 6 ~ ~ ; ; 10 

Cosmic time t 

Fig. 4. Time dependence of angle Z. For the creation-ex-nihilo solution (42) (lower curve), 
the angle X starts with value ~/2 and then approximates ;~ = 2 beyond the inflationary phase; 
cf. (36a). This behavior induces the number oscillation shown in Fig. 3 and legitimates the 
estimate (52). Similar oscillations arise for a bounce solution (upper curve). 
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and  the compar i son  of this result to (42b) yields the desired es t imate  as 

1 C 3 ~  ~ ~t,f A =o,-, ~ /t<. ~ U./JX<. (55) 

Despi te  its roughness ,  this a p p r o x i m a t i o n  confirms the general  
s u p p o s i t i o n - - s u g g e s t e d  also by  the numer ica l  r e s u l t s - - t h a t  the ul t imate  
par t ic le  number  # ,  in any  comoving  3-cell of size r(t) 3 at t ime t is p r o p o r -  
t ional  to /1  c : 

k t , (A,  # ~ ) =  f ( A ) # ,  (56) 

with the unknown  function f ( A )  still to be determined.  

6.3. Bounce Solutions 

The creation-ex-nihilo solut ion discussed so far is not  the only non-  
s ingular  type admi t t ed  by the D i r a c - E i n s t e i n  system (31), (32), (35), (36a) 
for an open universe or= +1.  The numer ica l  in tegra t ions  of  that  system 
reveal  the existence of  bounce solutions, where the universe is ini t ial ly in a 
state of  cont rac t ion ,  which, however,  comes to a hal t  at  some min imal  
radius  rb and then passes over  to cont inua l  reexpans ion  (Fig. 5). The 
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"bounce radius" r b depends sensitively upon the "bounce angle" Zb (:= X[ rb) 
and is given approximately through 

rb ~ - 3 cos Zb (57) 

n/2 < Zb < 3n/2 

provided the "bounce number" #b is taken to be large (~b >> 1). 
For general initial conditions, the bounce solution will not be time- 

symmetric with respect to the bounce instant (~=0) .  This becomes 
especially evident by considering the particle number #, which is constant 
sufficiently far away from the bounce (Fig. 6), but this constant is not 
necessarily the same before and after the bounce. If the bounce angle Zb is 
in the interval n/2 < Zb < n, then the particle number is increased through 
the bounce [ # ( t ~ o o ) > / ~ ( t ~ - o o ) ] ;  conversely, for the interval 
n < Zb < 3n/2 it is decreased. The intermediate case Zb = n yields a time- 
symmetric configuration (in the limit /~b --' oO). 

Summarizing, the bounce solution is a transient configuration which 
in general changes the particle number and joins an asymptotic contractive 
phase in the past to an expansive one in the distant future, where both 
asymptotic states are simultaneously solutions of the standard cosmologi- 
cal model. Since the bounce radius is restricted to the magnitude of the 
Compton length (rn-~), the bounce appears as a typical quantum effect. 
Moreover, the thermodynamic coefficient /~ surpasses the radiation- 
dominance value 1/3 for rb--'0 [cf. (28)] and thus signals the.essential 
thermodynamic difference of both types of solutions. 
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